• Sign in to follow this  
    Followers 0

    General Motors Releases Ignition Switch Recall Report


    • GM Talks About The Ignition Switch Recall Report and What's Being Done


    The internal investigation has been completed and General Motors has released the report that looks into the handling of the ignition switch recall. During a town hall meeting this morning at GM's headquarters, CEO Mary Barra said the report was "extremely thorough, brutally tough, and deeply troubling," and announced changes to the company's policies and processes.

    “Overall the report found that, from start to finish, the Cobalt saga was riddled with failures which led to tragic results for many,” said Barra.

    The 315 page report, done by former U.S. Attorney Anton Valukas finds that General Motors suffered from “organizational dysfunction” and that there were deceit and missed opportunities for GM to come clean on the ignition switch problem. The report also determined that Barra, General Counsel Michael Millikin, and head of global product development Mark Reuss did not learn of the ignition switch problem and the delay in addressing them until after the decision to issue a recall was made on January 31, 2014.

    "The structure within GM was one in which no one was held responsible and no one took responsibility," said the report.

    Barra announced at the meeting that fifteen individuals have been fired after it was determined to have acted inappropriately. More than half of those individuals were in executive roles or higher. Another five individuals have received disciplinary action.

    Barra also announced a compensation program that will be headed up by attorney Kenneth Feinberg. The program will offer compensation to those who either suffered a serious injury or lost a loved one due to the ignition switch problem.

    GM has also taken action by instituting a number of changes on how it deals with safety issues.

    • Appointing Jeff Boyer to the new position of Vice President of Global Vehicle Safety
    • Adding 35 product safety investigators
    • Creating the Speak up for Safety program that allows employees to report on potential safety issues
    • Introducing a new Global Product Integrity organization to enhance overall safety and quality performance
    • Restructuring the recall decision making process to raise it to the highest levels of the company

    "Together, we have to understand that the attitudes and practices that allowed this failure to occur will not be tolerated. Also, if we think that cleaning up this problem and making a few process changes will be enough, we are badly mistaken. Our job is not just to fix the problem. Our job must be to set a new industry standard for safety, quality, and excellence,” said Barra.

    Source: The Detroit News (2), Motoramic, General Motors, Valukas Report

    Press Release is on Page 2


    GM Receives Extremely ‘Thorough,’ ‘Brutally Tough’ and ‘Deeply Troubling’ Valukas Report

    2014-06-05

    • Company will act on all recommendations
    • 15 GM employees no longer with company
    • Five other GM employees disciplined
    • Report reveals no conspiracy or cover-up
    • Feinberg to administer compensation fund

    DETROIT – General Motors CEO Mary Barra said today that GM has received the findings of an investigation by former U.S. Attorney Anton Valukas into the Cobalt ignition switch recall and plans to act on all of its recommendations.

    She again expressed deep sympathy for the victims of accidents related to the ignition switch defect and their families. In addition, Barra announced that Kenneth Feinberg will administer a compensation program for those who have lost loved ones or who have suffered serious physical injuries as the result of an ignition switch failure in recently recalled vehicles.

    Barra described the Valukas findings as "extremely thorough, brutally tough, and deeply troubling."

    “Overall the report found that, from start to finish, the Cobalt saga was riddled with failures which led to tragic results for many,” Barra said, noting that the report revealed no conspiracy by the company to cover up the facts and no evidence that any employee made a trade-off between safety and cost.

    Barra said 15 individuals who were determined to have acted inappropriately are no longer with the company. Disciplinary actions have been taken against five other employees.

    GM Chairman Tim Solso said the Board of Directors has been working closely with the management team to get the facts on the ignition switch issue and to see that changes are made to prevent such a tragedy from ever happening again.

    “The Board engaged Anton Valukas to investigate and determine what went wrong while already working with GM’s leadership to make necessary changes,” Solso said. “We have received and reviewed Valukas’ very thorough report and are continuing to work with management to oversee the implementation of the recommendations contained in the report.

    “In addition, the Board also retained independent counsel to advise us with respect to this situation and governance and risk management issues. We will establish a stand-alone risk committee to assist in overseeing these efforts.” Solso said. “The Board, like management, is committed to changing the company’s culture and processes to ensure that the problems described in the Valukas report never happen again.

    “The Valukas report confirmed that Mary Barra, Mike Millikin and Mark Reuss did not learn about the ignition switch safety issues and the delay in addressing them until after the decision to issue a recall was made on Jan. 31, 2014,” Solso said.

    Barra emphasized to employees that the company has adopted and will continue to adopt sweeping changes in the way it handles safety issues. The actions to date include:

    • Appointing Jeff Boyer as Vice President of Global Vehicle Safety, elevating and integrating GM’s safety processes under a single leader
    • Adding 35 product safety investigators that will allow GM to identify and address issues much more quickly
    • Instituting the Speak up for Safety program encouraging employees to report potential safety issues quickly and forcefully
    • Creating a new Global Product Integrity organization to enhance overall safety and quality performance, and
    • Restructuring the recall decision making process to raise it to the highest levels of the company.

    In her remarks to employees, Barra said she is committed to leading "in a way that brings honor and respect to this company.

    "Together, we have to understand that the attitudes and practices that allowed this failure to occur will not be tolerated,” she said. “Also, if we think that cleaning up this problem and making a few process changes will be enough, we are badly mistaken. Our job is not just to fix the problem. Our job must be to set a new industry standard for safety, quality, and excellence.”

    0


      Report Article
    Sign in to follow this  
    Followers 0


    User Feedback


    Awesome Read, nice job. This is great to hear and as I have stated in another thread, I think Mary is the best CEO ever for GM, they will truly move in directions that people will be happy with and earn long term customers with quality products.

    0

    Share this comment


    Link to comment
    Share on other sites

    Firing 15 and disciplining 5 more is a great start. Now if only Delphi were to pay for this entire recall AND pay into the victims' compensation fund too.

    It is good that the ghosts of Old GM are finally being purged from the New GM for good. Rising sales are nice too.

    1

    Share this comment


    Link to comment
    Share on other sites

    Firing 15 and disciplining 5 more is a great start. Now if only Delphi were to pay for this entire recall AND pay into the victims' compensation fund too.

    It is good that the ghosts of Old GM are finally being purged from the New GM for good. Rising sales are nice too.

    I totally agree with you that Delphi needs to go through the same process, hold those still around accountable for their actions and contribute to the fund. This will show good corporate responsibility and good will towards raising their brand identity.

    More companies need to understand and support how their brand identity is perceived out in the market place.

    0

    Share this comment


    Link to comment
    Share on other sites


    Your content will need to be approved by a moderator

    Guest
    You are commenting as a guest. If you have an account, please sign in.
    Add a comment...

    ×   You have pasted content with formatting.   Remove formatting

    ×   Your link has been automatically embedded.   Display as a link instead

    Loading...



  • Popular Stories

  • Today's Birthdays

    1. BowTieFarmer
      BowTieFarmer
      (57 years old)
    2. will75
      will75
      (41 years old)
  • Similar Content

    • By William Maley
      Over the weekend, General Motors published and then deleted the power figures for the new 6.6L Duramax Diesel V8 that would be appearing in the 2017 Chevrolet Silverado HD and GMC Sierra HD. Today at the Texas State Fair, GM revealed everything about this new engine.
      We'll begin with the most important detail, power output. The numbers that GM revealed match the numbers posted to their powertrain site - 445 horsepower and 910 pound-feet of torque. Compared to the current Duramax V8, the new engine produces 48 more horsepower and 145 more pound-feet of torque.
      How was GM able to pull this off? They basically went through the engine with a fine tooth comb and made various changes. GM says 90 percent of this engine has been changed. Some of the changes include new electronically controlled, variable-vane turbocharger, revised cylinder heads, improved cooling, and revised fuel delivery system. The updated Duramax can also run B20 bio-diesel.
      Figures for payload and towing will be announced at a later date.
      Source: Chevrolet, GMC
      Press Release is on Page 2


      DALLAS — Chevrolet today announced the redesigned Duramax 6.6L V-8 turbo-diesel offered on the 2017 Silverado HD. This next-generation redesign offers more horsepower and torque than ever — an SAE-certified 445 horsepower (332 kW) and 910 lb.-ft. (1,234 Nm) — to enable easier, more confident hauling and trailering.
      Along with a 19 percent increase in max torque over the current Duramax 6.6L, the redesigned turbo-diesel’s performance is quieter and smoother, for greater refinement. In fact, engine noise at idle is reduced 38 percent.
      “With nearly 2 million sold over the past 15 years, customers have forged a bond with the Duramax diesel based on trust and capability,” said Dan Nicholson, vice president, Global Propulsion Systems. “The new Duramax takes those traits to higher levels.”
      The new Duramax 6.6L shares essentially only the bore and stroke dimensions of the current engine and incorporates a new, GM-developed control system. The Duramax’s signature low-rpm torque production hasn’t changed and still offers 90 percent of peak torque at a low 1,550 rpm and sustains it through 2,850 rpm.
      “Nearly everything about the Duramax is new, designed to produce more torque at lower rpm and more confidence when trailering or hauling,” said Gary Arvan, chief engineer. “You’ll also notice the refinement improvements the moment you start the engine, and appreciate them as you cruise quietly down the highway — with or without a trailer.”
      Additional highlights include:
      New, stronger cylinder block and cylinder heads New, stronger rotating and reciprocating assembly Increased oil- and coolant-flow capacity New EGR system with single cooler and integrated bypass New electrically actuated/electronically controlled turbocharging system All-new advanced solenoid fuel system All-new electronic controls New full-length damped steel oil pan that contributes to quietness New rocker cover/fuel system acoustical treatments B20 bio-diesel compatibility SAE-certified 445 net horsepower (332 kW) at 2,800 rpm SAE-certified 910 net lb.-ft. of torque (1,234 Nm) at 1,600 rpm A new, patent-pending vehicle air intake system — distinguished on the Silverado HD by a bold hood scoop — drives cool, dry air into the engine for sustained performance and cooler engine temperatures during difficult conditions, such as trailering on steep grades. Cooler air helps the engine run better under load, especially in conditions where engine and transmission temperatures can rise quickly. That allows the Duramax to maintain more power and vehicle speed when trailering in the toughest conditions.
      The intake design is another example of the advanced integration included in the 2017 Silverado HD that makes it over-the-road capable.   
      A strong foundation
      As with previous versions, the new Duramax block features a strong cast-iron foundation known for its durability, with induction-hardened cylinder walls and five nodular iron main bearings. It retains the same 4.05-inch (103mm) and 3.89-inch (99mm) bore and stroke dimensions as the current engine, retaining the Duramax’s familiar 6.6L (403 cu.-in./6,599 cc) displacement.
      A deep-skirt design and four-bolt, cross-bolted main caps help ensure the block’s strength and enable more accurate location of the rotating assembly. A die-cast aluminum lower crankcase also strengthens the engine block and serves as the lower engine cover, while reducing its overall weight.
      The new engine block incorporates larger-diameter crankshaft connecting rod journals than the current engine, enabling the placement of a stronger crankshaft and increased bearing area to handle higher cylinder loads.
      An enhanced oiling circuit, with higher flow capacity and a dedicated feed for the turbocharger, provides increased pressure at the turbo and faster oil delivery. Larger piston-cooling oil jets at the bottom of the cylinder bores spray up to twice the amount of engine oil into oil galleries under the crown of the pistons, contributing to lower engine temperature and greater durability.
      A new, two-piece oil pan contributes to the new Duramax’s quieter operation. It consists of a laminated steel oil pan with an upper aluminum section. The aluminum section provides strength-enhancing rigidity for the engine, but a pan made entirely of aluminum would radiate more noise, so the laminated steel lower section is added to dampen noise and vibration.
      There’s also an integrated oil cooler with 50 percent greater capacity than the current engine’s, ensuring more consistent temperatures at higher engine loads.
      Segment firsts
      Re-melt piston bowl rim Venturi Jet Drain Oil Separator Closed-loop glow plug temperature control Stronger pistons with remelt
      A tough, forged micro-alloy steel crankshaft anchors the new Duramax’s stronger rotating assembly. Cut-then-rolled journal fillets contribute to its durability by strengthening the junction where the journals — the round sections on which the bearings slide — meet the webs that separate the main and rod journals.
      The connecting rods are stronger, too, and incorporate a new 45-degree split-angle design to allow the larger-diameter rod bearings to pass through the cylinder bores during engine assembly. They’re forged and sintered with a durable powdered metal alloy, with a fractured-cap design enabling more precise cap-to-rod fitment. 
      A new, stronger cast-aluminum piston design tops off the rotating assembly. It features a taller crown area and a remelted combustion bowl rim for greater strength. Remelting is an additional manufacturing process for aluminum pistons in which the bowl rim area is reheated after casting and pre-machining, creating a much finer and more consistent metal grain structure that greatly enhances thermal fatigue properties.
      Additionally, the Duramax’s pistons don’t use pin bushings, reducing reciprocating weight to help the engine rev quicker and respond faster to throttle changes.
      Lightweight cylinder heads, solenoid injectors
      The redesigned engine retains the Duramax’s signature first-in-class aluminum cylinder head design, with six head bolts per cylinder and four valves per cylinder. The aluminum construction helps reduce the engine’s overall weight, while the six-bolt design provides exceptional head-clamping strength — a must in a high-compression, turbocharged application.
      A new aluminum head casting uses a new double-layer water core design that separates and arranges water cores in layers to create a stiffer head structure with more precise coolant flow control. The heads’ airflow passages are also heavily revised to enhance airflow, contributing to the engine’s increased horsepower and torque.
      The Duramax employs a common-rail direct injection fuel system with new high-capability solenoid-type injectors. High fuel pressure of 29,000 psi (2,000 bar) promotes excellent fuel atomization for a cleaner burn that promotes reduced particulate emissions. The new injectors also support up to seven fuel delivery events per combustion event, contributing to lower noise, greater efficiency and lower emissions. Technology advancements enable less-complex solenoid injectors to deliver comparable performance to piezo-type injectors.
      Electronically controlled, variable-geometry turbocharging system
      A new electronically controlled, variable-vane turbocharger advances the Duramax’s legacy of variable-geometry boosting. Compared to the current engine, the system produces higher maximum boost pressure — 28 psi (195 kPa) — to help the engine make more power, and revisions to enhance the capability of the exhaust-brake system.
      Along with a new camshaft profile and improved cylinder head design, the Duramax’s new variable-vane turbocharger enables the engine to deliver more power with lower exhaust emissions. It uses a more advanced variable-vane mechanism, allowing a 104-degree F (40 C) increase in exhaust temperature capability. The self-contained mechanism decouples movement from the turbine housing, allowing operation at higher temperature. That enables the engine to achieve higher power at lower cylinder pressure. Additionally, it has lower internal leakage, allowing more exhaust energy to be captured during exhaust braking.
      The integrated exhaust brake system makes towing less stressful by creating added backpressure in the exhaust, resulting in negative torque during deceleration and downhill driving, enhancing driver control and prolonging brake pad life.
      Venturi Jet Drain Oil Separator
      A new Venturi Jet Drain Oil Separator employed with the Duramax 6.6L is the first of its type in the segment and is designed to ensure oil control in sustained full-load operation. The totally sealed system collects the fine mist of oil entrained in the blow-by gas and uses a small portion of the boosted air generated by the turbocharger to pump the collected oil back to the engine oil sump for re-use by the engine. Less sophisticated systems are not able to return this oil during full-load operation, which can result in oil carryover into the cylinders during combustion.
      Cold Start System
      The new Duramax also provides outstanding cold-weather performance, with microprocessor-controlled glow plugs capable of gas-engine-like starting performance in fewer than 3 seconds in temperatures as low as -20 degrees F (-29 C) without a block heater. The system is enhanced with ceramic glow plugs and automatic temperature compensation — a first-in-class feature providing improved robustness and capability. The automatic temperature compensation assesses and adjusts the current to each glow plug for every use, providing optimal temperature for cold start performance and durability.     
      Electronic throttle valve and cooled EGR
      Unlike a gasoline engine, a diesel engine doesn’t necessarily require a throttle control system. The Duramax 6.6L employs an electronic throttle valve to regulate intake manifold pressure in order to increase exhaust gas recirculation (EGR) rates. It also contributes to smoother engine shutdown.
      Additionally, a cooled exhaust gas recirculation (EGR) system enhances performance and helps reduce emissions by diverting some of the engine-out exhaust gas and mixing it back into the fresh intake air stream, which is fed through the cylinder head for combustion. This lowers combustion temperatures, improving emissions performance by reducing NOx formation.
      The exhaust is cooled in a unique heat exchanger before it’s fed into the intake stream through a patented EGR mixing device, further improving emissions and performance capability. An integrated bypass allows non-cooled exhaust gas to be fed back into the system to help the engine more quickly achieve optimal operating temperature when cold.
      B20 Biodiesel Capability
      The new Duramax 6.6L is capable of running on B20 biodiesel, a fuel composed of 20 percent biodiesel and 80 percent conventional diesel. B20 helps lower carbon dioxide emissions and lessens dependence on petroleum. It is a domestically produced, renewable fuel made primarily of plant matter — mostly soybean oil.
      Manufacturing
      The new Duramax 6.6L turbo-diesel engine is produced with locally and globally sourced parts at the DMAX Ltd. (GM’s joint venture with Isuzu) manufacturing facility in Moraine, Ohio.
      Allison 1000 Automatic Transmission
      The proven Allison 1000 six-speed automatic transmission is matched with the new Duramax 6.6L. A number of refinements have been made to accommodate the engine’s higher torque capacity, including a new torque converter.
      The Allison 1000’s technologically advanced control features, such as driver shift control with manual shift feature and a patented elevated idle mode cab warm-up feature, haven’t changed. Also, the Tow/Haul mode reduces shift cycling for better control and improved cooling when towing or hauling heavy loads.
      There’s also a smart diesel exhaust brake feature that enhances control when descending steep grades.

      View full article
    • By William Maley
      Over the weekend, General Motors published and then deleted the power figures for the new 6.6L Duramax Diesel V8 that would be appearing in the 2017 Chevrolet Silverado HD and GMC Sierra HD. Today at the Texas State Fair, GM revealed everything about this new engine.
      We'll begin with the most important detail, power output. The numbers that GM revealed match the numbers posted to their powertrain site - 445 horsepower and 910 pound-feet of torque. Compared to the current Duramax V8, the new engine produces 48 more horsepower and 145 more pound-feet of torque.
      How was GM able to pull this off? They basically went through the engine with a fine tooth comb and made various changes. GM says 90 percent of this engine has been changed. Some of the changes include new electronically controlled, variable-vane turbocharger, revised cylinder heads, improved cooling, and revised fuel delivery system. The updated Duramax can also run B20 bio-diesel.
      Figures for payload and towing will be announced at a later date.
      Source: Chevrolet, GMC
      Press Release is on Page 2


      DALLAS — Chevrolet today announced the redesigned Duramax 6.6L V-8 turbo-diesel offered on the 2017 Silverado HD. This next-generation redesign offers more horsepower and torque than ever — an SAE-certified 445 horsepower (332 kW) and 910 lb.-ft. (1,234 Nm) — to enable easier, more confident hauling and trailering.
      Along with a 19 percent increase in max torque over the current Duramax 6.6L, the redesigned turbo-diesel’s performance is quieter and smoother, for greater refinement. In fact, engine noise at idle is reduced 38 percent.
      “With nearly 2 million sold over the past 15 years, customers have forged a bond with the Duramax diesel based on trust and capability,” said Dan Nicholson, vice president, Global Propulsion Systems. “The new Duramax takes those traits to higher levels.”
      The new Duramax 6.6L shares essentially only the bore and stroke dimensions of the current engine and incorporates a new, GM-developed control system. The Duramax’s signature low-rpm torque production hasn’t changed and still offers 90 percent of peak torque at a low 1,550 rpm and sustains it through 2,850 rpm.
      “Nearly everything about the Duramax is new, designed to produce more torque at lower rpm and more confidence when trailering or hauling,” said Gary Arvan, chief engineer. “You’ll also notice the refinement improvements the moment you start the engine, and appreciate them as you cruise quietly down the highway — with or without a trailer.”
      Additional highlights include:
      New, stronger cylinder block and cylinder heads New, stronger rotating and reciprocating assembly Increased oil- and coolant-flow capacity New EGR system with single cooler and integrated bypass New electrically actuated/electronically controlled turbocharging system All-new advanced solenoid fuel system All-new electronic controls New full-length damped steel oil pan that contributes to quietness New rocker cover/fuel system acoustical treatments B20 bio-diesel compatibility SAE-certified 445 net horsepower (332 kW) at 2,800 rpm SAE-certified 910 net lb.-ft. of torque (1,234 Nm) at 1,600 rpm A new, patent-pending vehicle air intake system — distinguished on the Silverado HD by a bold hood scoop — drives cool, dry air into the engine for sustained performance and cooler engine temperatures during difficult conditions, such as trailering on steep grades. Cooler air helps the engine run better under load, especially in conditions where engine and transmission temperatures can rise quickly. That allows the Duramax to maintain more power and vehicle speed when trailering in the toughest conditions.
      The intake design is another example of the advanced integration included in the 2017 Silverado HD that makes it over-the-road capable.   
      A strong foundation
      As with previous versions, the new Duramax block features a strong cast-iron foundation known for its durability, with induction-hardened cylinder walls and five nodular iron main bearings. It retains the same 4.05-inch (103mm) and 3.89-inch (99mm) bore and stroke dimensions as the current engine, retaining the Duramax’s familiar 6.6L (403 cu.-in./6,599 cc) displacement.
      A deep-skirt design and four-bolt, cross-bolted main caps help ensure the block’s strength and enable more accurate location of the rotating assembly. A die-cast aluminum lower crankcase also strengthens the engine block and serves as the lower engine cover, while reducing its overall weight.
      The new engine block incorporates larger-diameter crankshaft connecting rod journals than the current engine, enabling the placement of a stronger crankshaft and increased bearing area to handle higher cylinder loads.
      An enhanced oiling circuit, with higher flow capacity and a dedicated feed for the turbocharger, provides increased pressure at the turbo and faster oil delivery. Larger piston-cooling oil jets at the bottom of the cylinder bores spray up to twice the amount of engine oil into oil galleries under the crown of the pistons, contributing to lower engine temperature and greater durability.
      A new, two-piece oil pan contributes to the new Duramax’s quieter operation. It consists of a laminated steel oil pan with an upper aluminum section. The aluminum section provides strength-enhancing rigidity for the engine, but a pan made entirely of aluminum would radiate more noise, so the laminated steel lower section is added to dampen noise and vibration.
      There’s also an integrated oil cooler with 50 percent greater capacity than the current engine’s, ensuring more consistent temperatures at higher engine loads.
      Segment firsts
      Re-melt piston bowl rim Venturi Jet Drain Oil Separator Closed-loop glow plug temperature control Stronger pistons with remelt
      A tough, forged micro-alloy steel crankshaft anchors the new Duramax’s stronger rotating assembly. Cut-then-rolled journal fillets contribute to its durability by strengthening the junction where the journals — the round sections on which the bearings slide — meet the webs that separate the main and rod journals.
      The connecting rods are stronger, too, and incorporate a new 45-degree split-angle design to allow the larger-diameter rod bearings to pass through the cylinder bores during engine assembly. They’re forged and sintered with a durable powdered metal alloy, with a fractured-cap design enabling more precise cap-to-rod fitment. 
      A new, stronger cast-aluminum piston design tops off the rotating assembly. It features a taller crown area and a remelted combustion bowl rim for greater strength. Remelting is an additional manufacturing process for aluminum pistons in which the bowl rim area is reheated after casting and pre-machining, creating a much finer and more consistent metal grain structure that greatly enhances thermal fatigue properties.
      Additionally, the Duramax’s pistons don’t use pin bushings, reducing reciprocating weight to help the engine rev quicker and respond faster to throttle changes.
      Lightweight cylinder heads, solenoid injectors
      The redesigned engine retains the Duramax’s signature first-in-class aluminum cylinder head design, with six head bolts per cylinder and four valves per cylinder. The aluminum construction helps reduce the engine’s overall weight, while the six-bolt design provides exceptional head-clamping strength — a must in a high-compression, turbocharged application.
      A new aluminum head casting uses a new double-layer water core design that separates and arranges water cores in layers to create a stiffer head structure with more precise coolant flow control. The heads’ airflow passages are also heavily revised to enhance airflow, contributing to the engine’s increased horsepower and torque.
      The Duramax employs a common-rail direct injection fuel system with new high-capability solenoid-type injectors. High fuel pressure of 29,000 psi (2,000 bar) promotes excellent fuel atomization for a cleaner burn that promotes reduced particulate emissions. The new injectors also support up to seven fuel delivery events per combustion event, contributing to lower noise, greater efficiency and lower emissions. Technology advancements enable less-complex solenoid injectors to deliver comparable performance to piezo-type injectors.
      Electronically controlled, variable-geometry turbocharging system
      A new electronically controlled, variable-vane turbocharger advances the Duramax’s legacy of variable-geometry boosting. Compared to the current engine, the system produces higher maximum boost pressure — 28 psi (195 kPa) — to help the engine make more power, and revisions to enhance the capability of the exhaust-brake system.
      Along with a new camshaft profile and improved cylinder head design, the Duramax’s new variable-vane turbocharger enables the engine to deliver more power with lower exhaust emissions. It uses a more advanced variable-vane mechanism, allowing a 104-degree F (40 C) increase in exhaust temperature capability. The self-contained mechanism decouples movement from the turbine housing, allowing operation at higher temperature. That enables the engine to achieve higher power at lower cylinder pressure. Additionally, it has lower internal leakage, allowing more exhaust energy to be captured during exhaust braking.
      The integrated exhaust brake system makes towing less stressful by creating added backpressure in the exhaust, resulting in negative torque during deceleration and downhill driving, enhancing driver control and prolonging brake pad life.
      Venturi Jet Drain Oil Separator
      A new Venturi Jet Drain Oil Separator employed with the Duramax 6.6L is the first of its type in the segment and is designed to ensure oil control in sustained full-load operation. The totally sealed system collects the fine mist of oil entrained in the blow-by gas and uses a small portion of the boosted air generated by the turbocharger to pump the collected oil back to the engine oil sump for re-use by the engine. Less sophisticated systems are not able to return this oil during full-load operation, which can result in oil carryover into the cylinders during combustion.
      Cold Start System
      The new Duramax also provides outstanding cold-weather performance, with microprocessor-controlled glow plugs capable of gas-engine-like starting performance in fewer than 3 seconds in temperatures as low as -20 degrees F (-29 C) without a block heater. The system is enhanced with ceramic glow plugs and automatic temperature compensation — a first-in-class feature providing improved robustness and capability. The automatic temperature compensation assesses and adjusts the current to each glow plug for every use, providing optimal temperature for cold start performance and durability.     
      Electronic throttle valve and cooled EGR
      Unlike a gasoline engine, a diesel engine doesn’t necessarily require a throttle control system. The Duramax 6.6L employs an electronic throttle valve to regulate intake manifold pressure in order to increase exhaust gas recirculation (EGR) rates. It also contributes to smoother engine shutdown.
      Additionally, a cooled exhaust gas recirculation (EGR) system enhances performance and helps reduce emissions by diverting some of the engine-out exhaust gas and mixing it back into the fresh intake air stream, which is fed through the cylinder head for combustion. This lowers combustion temperatures, improving emissions performance by reducing NOx formation.
      The exhaust is cooled in a unique heat exchanger before it’s fed into the intake stream through a patented EGR mixing device, further improving emissions and performance capability. An integrated bypass allows non-cooled exhaust gas to be fed back into the system to help the engine more quickly achieve optimal operating temperature when cold.
      B20 Biodiesel Capability
      The new Duramax 6.6L is capable of running on B20 biodiesel, a fuel composed of 20 percent biodiesel and 80 percent conventional diesel. B20 helps lower carbon dioxide emissions and lessens dependence on petroleum. It is a domestically produced, renewable fuel made primarily of plant matter — mostly soybean oil.
      Manufacturing
      The new Duramax 6.6L turbo-diesel engine is produced with locally and globally sourced parts at the DMAX Ltd. (GM’s joint venture with Isuzu) manufacturing facility in Moraine, Ohio.
      Allison 1000 Automatic Transmission
      The proven Allison 1000 six-speed automatic transmission is matched with the new Duramax 6.6L. A number of refinements have been made to accommodate the engine’s higher torque capacity, including a new torque converter.
      The Allison 1000’s technologically advanced control features, such as driver shift control with manual shift feature and a patented elevated idle mode cab warm-up feature, haven’t changed. Also, the Tow/Haul mode reduces shift cycling for better control and improved cooling when towing or hauling heavy loads.
      There’s also a smart diesel exhaust brake feature that enhances control when descending steep grades.
    • By William Maley
      The seemingly never-ending diesel heavy-duty truck war is back in force with Ford announcing the power figures for the F-Series Super Duty back in the summer. We were wondering when either FCA or GM would strike back. Well GM did this over the weekend by accidently and then subsequently deleting the figures for the next-generation Duramax V8 diesel.
      Truck Trend got screenshots of GM Powertrain's website where the details of the L5P 6.6L Duramax turbodiesel are there to see: 445 horsepower and 910 pound-feet of torque. Compared the 6.7L PowerStoke V8 found in the 2017 F-Series Super Duty, the updated Duramax produces 5 more horsepower but is slight behind in torque (15 down from the PowerStroke's 925 pound-feet).
      We know for sure that the new Duramax will debut a new air intake system (you can see the new hood scoop in the picture above). More air is a good thing as it means better cooling and more power.
      The Texas State Fair is this week and it has become a showplace for the various truck manufacturers to make big announcements. We wouldn't be shocked if General Motors debuts the new Duramax there.
      Source: Truck Trend

      View full article
    • By William Maley
      The seemingly never-ending diesel heavy-duty truck war is back in force with Ford announcing the power figures for the F-Series Super Duty back in the summer. We were wondering when either FCA or GM would strike back. Well GM did this over the weekend by accidently and then subsequently deleting the figures for the next-generation Duramax V8 diesel.
      Truck Trend got screenshots of GM Powertrain's website where the details of the L5P 6.6L Duramax turbodiesel are there to see: 445 horsepower and 910 pound-feet of torque. Compared the 6.7L PowerStoke V8 found in the 2017 F-Series Super Duty, the updated Duramax produces 5 more horsepower but is slight behind in torque (15 down from the PowerStroke's 925 pound-feet).
      We know for sure that the new Duramax will debut a new air intake system (you can see the new hood scoop in the picture above). More air is a good thing as it means better cooling and more power.
      The Texas State Fair is this week and it has become a showplace for the various truck manufacturers to make big announcements. We wouldn't be shocked if General Motors debuts the new Duramax there.
      Source: Truck Trend
    • By William Maley
      The tentative agreement between General Motors and Canadian union Unifor has a $400 million investment going to Oshawa for a new product. Unifor President Jerry Dias said at a press briefing yesterday morning that Oshawa would be the only GM plant that will build cars and trucks. Neither side is saying what that product might be.
      But Canadian newspaper The Globe and Mail has learned from sources that Oshawa will be handling the final assembly of the Chevrolet Silverado and GMC Sierra. Truck bodies from GM's Fort Wayne Assembly in Indiana will travel to Oshawa to have interiors installed and final assembly. The Detroit News reports something similar, although their source says it will only be the Silverado.
      Oshawa has a history of building pickups. For four decades, Oshawa was one of the places where GM built the Silverado and Sierra. But in 2009, GM closed the truck plant due to the recession. 
      The Globe and Mail also reports that production of the XTS has been extended at Oshawa. Analysts believed previously that XTS production would end in 2019.
      Source: The Globe and Mail, The Detroit News

      View full article
  • Recent Status Updates

  • Who's Online (See full list)

    There are no registered users currently online