Jump to content
  • William Maley
    William Maley

    Saab's New Owner Seeks Permission To Name & Logo

    Sign in to follow this  

    William Maley

    Staff Writer - CheersandGears.com

    June 28, 2012

    Earlier this month, National Electric Vehicle Sweden AB (NEVS) bought up the assets of Saab, except for two key items; the name and logo of Saab.

    The Saab name and logo are under control of defense company Saab AB and truck maker Scania, and National Electric Vehicle Sweden has to ask for permission to use it.

    "Every use of the trademark had to be discussed. NEVS can't get hold of the Saab name until we've approved it. That is under discussion right now," Scania spokesman Hans-Ake Danielsson told Automotive News Europe this week. "We have to protect our good name and brand. We have to be sure the new owner will not jeopardize that name."

    Scania explained the decision to protect the Saab name and logo came from when General Motors bought up 50% of the passenger-car division of the company that included Saab AB, Saab Autos and Scania.

    NEVS spokesman Mikael Ostlund said: "All parties are looking for a solution as soon as possible."

    Source: Automotive News (Subscription Required)

    William Maley is a staff writer for Cheers & Gears. He can be reached at william.maley@cheersandgears.com or you can follow him on twitter at @realmudmonster.

    Sign in to follow this  


    User Feedback

    Recommended Comments

    This is a name that I think is Dead and I would not waste trying to get rights to the names. Just move forward with some much better name.

    Share this comment


    Link to comment
    Share on other sites


    Join the conversation

    You can post now and register later. If you have an account, sign in now to post with your account.
    Note: Your post will require moderator approval before it will be visible.

    Guest
    Add a comment...

    ×   Pasted as rich text.   Paste as plain text instead

      Only 75 emoji are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.




  • Similar Content

    • By Drew Dowdell
      The old SAAB 9-3 has risen from the dead! The platform, now owned by National Electric Vehicles Sweden (NEVS) is being used as the basis for a "new" electric vehicle.  The 9-3EV has gone into production in Tianjin China in a factory that can assemble up to 50,000 units a year. Further manufacturing facilities are being set up in Trollhättan, Sweden and a new facility in Shanghai China.
      Back in January, Evergrande Groupe, an investor in Faraday Future, purchased a 51% stake in NEVS for $930 million.  Evergrande is being tight lipped about the cars and no details have yet been released for range, power, battery size, or even On Sale dates.
    • By Drew Dowdell
      The old SAAB 9-3 has risen from the dead! The platform, now owned by National Electric Vehicles Sweden (NEVS) is being used as the basis for a "new" electric vehicle.  The 9-3EV has gone into production in Tianjin China in a factory that can assemble up to 50,000 units a year. Further manufacturing facilities are being set up in Trollhättan, Sweden and a new facility in Shanghai China.
      Back in January, Evergrande Groupe, an investor in Faraday Future, purchased a 51% stake in NEVS for $930 million.  Evergrande is being tight lipped about the cars and no details have yet been released for range, power, battery size, or even On Sale dates.

      View full article
    • By dfelt
      Revolution most commonly starts in the heart of what is to be disrupted. In this case, oil country is where one of the most revolutionary new motor designs is coming from. The minds at the University of Texas in Dallas, Dr. Babak Fahimi and the Renewable Enery and Vehicular Technology Laboratory brings us this new startup "Linear Labs Inc. A Smart Electric Motor Company" who just completed their funding round to allow them to market and produce their flagship motor, the Hunstable Electric Turbine motor.
      Currently today's electric vehicle has a high revving horsepower motor with low torque, as an example you can find many electric motors that produce 50 horsepower at 10,000 rpm with 26 lb-ft of torque. The Hunstable Electric Turbine motor produces that same 50 horsepower at 1,300 rpm with 200 lb-ft of torque thus eliminating the need for a gear box as well as other components which in turn reduces cost and complexity.
       

      The Hunstable motor while eliminating geared reduction thus being useful for direct drive applications retains the capability to perform at extremely high speeds and maintains maximum efficiency throughout the loading curve.
      Let's get into the technical chops of the Hunstable Electric Turbine (HET) motor.
      Permanent magnet circumferential flux 4 rotor motor 3D magnetic structure produces four active torque producing areas all with the same polarity 30% reduced use of copper in the coil Maximum torque production from all magnetic field interactions Reduced motor size due to patented unique design requires no unproductive open spaces Large Lorentz Force that peaks with a large reluctance force. Best way to explain this is to quote their website: " by extending the length of the magnetic tunnel region, the torque that is present throughout the coils travels without regard to the coils at pole face length. Unlike existing conventional machines where torque is only present at an optimum point as it approaches a magnetic pole, the HET has no single optimum point but rather all positions exhibit maximum torque. The torque and force will exist while the coil in in the tunnel, regardless of tunnel length.
      Traditional electric motors have always had a current pulse from the three phase supply requiring a timed rotation that allows for optimum torque production at a single instant in time where only a single phase is active. Electronics have been used to manipulate and soften the pulsations to some degree to gain performance as seen by the current leading EV manufacturers.
      The HET motor is able to use a different approach due to the large force presented. One could talk about coils, poles and phases but the end result is that the the technology used by the HET Motor allows for all phases produced to create a continuous pulse of power. These power pulses overlap rather than being sequential thus eliminating torque pulsations ending with maximum torque production.
      The HET Motor has an advantage that no other electric motor can equal and that is that via software control, the phases can be controlled into particular patterns allowing for true variable pole count ending in adjustable speed / torque development. To quote Linear Labs: "This allows a speed change increase with no changes in frequency, current or voltage level, which makes an electronic transmission possible."

      Current electric motors use what is called Field Weakening. This is where one has peak torque at 0 RPM but trades torque for speed as it goes faster. Excitation speed increases as torque drops by weakening the magnetic fields.
      Induction motors increase speed by reducing this excitation current, permanent magnet motors inject an opposing current to control this which is known as a D axis current injection. The constant horsepower region is what this area of speed increase is called. Torque being traded for speed, but total horsepower does not change.
      Efficiency drops off in the uses as stated above and this is what the HET motor addresses with its revolutionary design. To quote Linear Labs: " By slightly rotating a single side rotor, an axial magnetic component is introduced. This weakens , as far as the coils are concerned, the total magnetic field experienced by the coils. The degree of field weakening controls the trade-off between torque and speed.
      For the first time in electric machine history, as the HET Motor enters the Constant Horsepower Region, core losses drop and overall efficiencies actually climb."
      At this time you would not be blamed for saying "SO WHAT" what does this get me?
      The benefits of this revolutionary new motor or as Linear Labs likes to call it their electric turbine is the following list:
      Magnetic Configuration producing 100% more torque than any other design. Efficiency, reduced copper losses resulting in reduced on-board energy storage. Power, testing has shown that the HET motor with standard cooling produces continuous and peak power at 1.9 kW and  2.7 kW at a base speed of 3000 RPM superseding any other commercially available electric propulsion unit. Cost and Compactness, resulting in less cost of on-board electronics, converters, controllers, etc. Thermal Management, superior design due to less copper and what is known as end windings that contribute nothing to torque or output giving you superior efficiency. Variable speed applications, perfect for low speed constant use but also for high speed applications. Acoustic Noise, HET motors being smaller than current commercial counterparts along with limited torque pulsation provides a quiet drive system removing most noise heard by the human ear. Some of the markets that are ripe for Linear Labs motors are of course the auto industry, HVAC industry, industry manufacturing, pretty much any market where constant and variable electric motors are being used. This results in potential energy conservation on a large scale.
      Linear Labs see's the potential benefits from scooters, to drones, motorcycles, cars and trucks. The uses of their HET Motor will revolutionize the world while contributing to energy conservation.
       
    • By dfelt
      Revolution most commonly starts in the heart of what is to be disrupted. In this case, oil country is where one of the most revolutionary new motor designs is coming from. The minds at the University of Texas in Dallas, Dr. Babak Fahimi and the Renewable Enery and Vehicular Technology Laboratory brings us this new startup "Linear Labs Inc. A Smart Electric Motor Company" who just completed their funding round to allow them to market and produce their flagship motor, the Hunstable Electric Turbine motor.
      Currently today's electric vehicle has a high revving horsepower motor with low torque, as an example you can find many electric motors that produce 50 horsepower at 10,000 rpm with 26 lb-ft of torque. The Hunstable Electric Turbine motor produces that same 50 horsepower at 1,300 rpm with 200 lb-ft of torque thus eliminating the need for a gear box as well as other components which in turn reduces cost and complexity.
       

      The Hunstable motor while eliminating geared reduction thus being useful for direct drive applications retains the capability to perform at extremely high speeds and maintains maximum efficiency throughout the loading curve.
      Let's get into the technical chops of the Hunstable Electric Turbine (HET) motor.
      Permanent magnet circumferential flux 4 rotor motor 3D magnetic structure produces four active torque producing areas all with the same polarity 30% reduced use of copper in the coil Maximum torque production from all magnetic field interactions Reduced motor size due to patented unique design requires no unproductive open spaces Large Lorentz Force that peaks with a large reluctance force. Best way to explain this is to quote their website: " by extending the length of the magnetic tunnel region, the torque that is present throughout the coils travels without regard to the coils at pole face length. Unlike existing conventional machines where torque is only present at an optimum point as it approaches a magnetic pole, the HET has no single optimum point but rather all positions exhibit maximum torque. The torque and force will exist while the coil in in the tunnel, regardless of tunnel length.
      Traditional electric motors have always had a current pulse from the three phase supply requiring a timed rotation that allows for optimum torque production at a single instant in time where only a single phase is active. Electronics have been used to manipulate and soften the pulsations to some degree to gain performance as seen by the current leading EV manufacturers.
      The HET motor is able to use a different approach due to the large force presented. One could talk about coils, poles and phases but the end result is that the the technology used by the HET Motor allows for all phases produced to create a continuous pulse of power. These power pulses overlap rather than being sequential thus eliminating torque pulsations ending with maximum torque production.
      The HET Motor has an advantage that no other electric motor can equal and that is that via software control, the phases can be controlled into particular patterns allowing for true variable pole count ending in adjustable speed / torque development. To quote Linear Labs: "This allows a speed change increase with no changes in frequency, current or voltage level, which makes an electronic transmission possible."

      Current electric motors use what is called Field Weakening. This is where one has peak torque at 0 RPM but trades torque for speed as it goes faster. Excitation speed increases as torque drops by weakening the magnetic fields.
      Induction motors increase speed by reducing this excitation current, permanent magnet motors inject an opposing current to control this which is known as a D axis current injection. The constant horsepower region is what this area of speed increase is called. Torque being traded for speed, but total horsepower does not change.
      Efficiency drops off in the uses as stated above and this is what the HET motor addresses with its revolutionary design. To quote Linear Labs: " By slightly rotating a single side rotor, an axial magnetic component is introduced. This weakens , as far as the coils are concerned, the total magnetic field experienced by the coils. The degree of field weakening controls the trade-off between torque and speed.
      For the first time in electric machine history, as the HET Motor enters the Constant Horsepower Region, core losses drop and overall efficiencies actually climb."
      At this time you would not be blamed for saying "SO WHAT" what does this get me?
      The benefits of this revolutionary new motor or as Linear Labs likes to call it their electric turbine is the following list:
      Magnetic Configuration producing 100% more torque than any other design. Efficiency, reduced copper losses resulting in reduced on-board energy storage. Power, testing has shown that the HET motor with standard cooling produces continuous and peak power at 1.9 kW and  2.7 kW at a base speed of 3000 RPM superseding any other commercially available electric propulsion unit. Cost and Compactness, resulting in less cost of on-board electronics, converters, controllers, etc. Thermal Management, superior design due to less copper and what is known as end windings that contribute nothing to torque or output giving you superior efficiency. Variable speed applications, perfect for low speed constant use but also for high speed applications. Acoustic Noise, HET motors being smaller than current commercial counterparts along with limited torque pulsation provides a quiet drive system removing most noise heard by the human ear. Some of the markets that are ripe for Linear Labs motors are of course the auto industry, HVAC industry, industry manufacturing, pretty much any market where constant and variable electric motors are being used. This results in potential energy conservation on a large scale.
      Linear Labs see's the potential benefits from scooters, to drones, motorcycles, cars and trucks. The uses of their HET Motor will revolutionize the world while contributing to energy conservation.
       

      View full article
    • By William Maley
      The next-generation Jaguar F-Type is expected to arrive in 2021 and according to a report from Autocar, the company is deciding what powertrains should go into it.
      One option being considered is going with a fully electric powertrain. This would allow designers to push the boundaries of the next F-Type's design. Going electric would also allow for a lower center of gravity if Jaguar was able to mount the batteries below the floor. It is unclear how much power could be on tap, but we would expect a noticeable increase to the 197 horsepower electric motors used in the i-Pace.
      Another powertrain up for consideration is a V8 sourced from BMW. Codenamed Project Jennifer, the V8 in question is a 4.4L twin-turbo producing 640 horsepower and 600 pound-feet of torque - allowing the F-Type to challenge the most powerful Porsche 911s. Why is Jaguar sourcing a V8 from BMW and not developing its own? Blame falling V8 sales.
      Of course, there is the option of offering both gas and electric powertains. While that would limit design freedom by just going with an electric powertrain only, it would widen the appeal of the F-Type.
      One item that is certain is the platform. Autocar reports that the next F-Type will use an aluminum-intensive platform that will help reduce weight and make the interior slightly more spacious. It could also allow Jaguar to build a successor to the XK, something we reported back in May.
      Source: Autocar

      View full article
  • Social Stream

  • Who's Online (See full list)

    There are no registered users currently online

  • My Clubs

About us

CheersandGears.com - Founded 2001

We ♥ Cars

Get in touch

Follow us

Recent tweets

facebook

×
×
  • Create New...